Preconditioned Bayesian Regression for Stochastic Chemical Kinetics
نویسندگان
چکیده
We develop a preconditioned Bayesian regression method that enables sparse polynomial chaos representations of noisy outputs for stochastic chemical systems with uncertain reaction rates. The approach is based on the definition of an appropriate multiscale transformation of the state variables coupled with a Bayesian regression formalism. This enables efficient and robust recovery of both the transient dynamics and the corresponding noise levels. Implementation of the present approach is illustrated through applications to a stochastic Michaelis-Menten dynamics and a higher dimensional example involving a genetic positive feedback loop. In all cases, a stochastic simulation algorithm (SSA) is used to compute the system dynamics. Numerical experiments show that Bayesian preconditioning algorithms can simultaneously accommodate large noise levels and large variability with uncertain parameters, and that robust estimates can be obtained with a small number of SSA realizations.
منابع مشابه
Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks
Effective training of deep neural networks suffers from two main issues. The first is that the parameter spaces of these models exhibit pathological curvature. Recent methods address this problem by using adaptive preconditioning for Stochastic Gradient Descent (SGD). These methods improve convergence by adapting to the local geometry of parameter space. A second issue is overfitting, which is ...
متن کاملEfficient Bayesian inference in stochastic chemical kinetic models using graphical processing units
A goal of systems biology is to understand the dynamics of intracellular systems. Stochastic chemical kinetic models are often utilized to accurately capture the stochastic nature of these systems due to low numbers of molecules. Collecting system data allows for estimation of stochastic chemical kinetic rate parameters. We describe a well-known, but typically impractical data augmentation Mark...
متن کاملJoint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis
Here in, an application of a new seismic inversion algorithm in one of Iran’s oilfields is described. Stochastic (geostatistical) seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. This method integrates information from different data sources with different scales, as prior informat...
متن کاملRepresenting model inadequacy: A stochastic operator approach
Mathematical models of physical systems are subject to many uncertainties such as measurement errors and uncertain initial and boundary conditions. After accounting for these uncertainties, it is often revealed that discrepancies between the model output and the observations remain; if so, the model is said to be inadequate. In practice, the inadequate model may be the best that is available or...
متن کاملParameter inference for stochastic kinetic models of bacterial gene regulation: a Bayesian approach to systems biology
Bacteria are single-celled organisms which often display heterogeneous behaviour, even among populations of genetically identical cells in uniform environmental conditions. Markov process models arising from the theory of stochastic chemical kinetics are often used to understand the genetic regulation of the behaviour of individual bacterial cells. However, such models often contain uncertain p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Sci. Comput.
دوره 58 شماره
صفحات -
تاریخ انتشار 2014